X-raying Accretion Columns Cyclotron line studies with SIMBOL-X

- Observations
- Cyclotron line formation
- Cyclotron line diagnostics
- Mission comparison

Observations

- Many accreting X-ray pulsars show broad 'absorption' line features varying with pulse phase in their spectra.
 Currently ~15 known sources plus several candidates – including 3 isolated NS.
- Examples:
 Her X-1,
 4U 0115+63,
 GX 301-2,

 Lines neither atomic nor nuclear, but cyclotron resonance scattering features.

Cyclotron line formation

 Electron energies are quantized perpendicular to B field in "Landau states".

$$E_n = m_e c^2 \sqrt{1 + \left(\frac{p_{par}}{m_e c}\right)^2 + 2n \frac{B}{B_{crit}}}$$

 For B«B_{crit} energy spacing reduces to classical cyclotron energy.

$$E_{cyc} \equiv \frac{\hbar e}{m_e} \times B \approx 12 \left(\frac{B}{10^{12} G} \right) keV$$

- ⇒ *Resonant* cross sections for electron/photon scattering.
- \Rightarrow Emission region opaque for photons with $h v \approx n \times E_{cyc}$
- ⇒ 'Absorption' line features

Cyclotron line diagnostics

- Cyclotron line energies most direct measure of B.
- Relativistically corrected line varies with pulse phase
 - ⇒ information about emission geometry.

$$E_n = m_e c^2 \left| \frac{\sqrt{1 + 2n \left(\frac{B}{B_{crit}}\right) \sin^2 \theta} - 1}{\sin^2 \theta} \right|$$

- Scattering cross sections are complex functions of B, θ , n, kT, ...
- Powerful diagnostic of physical parameters in emission region if modeled and resolved in energy and time by observations!

Cyclotron line diagnostics

 Independent Monte-Carlo calculations (Araya & Harding 1996, 1999; Isenberg et al. 1998) show complex fundamental line shapes depending on emission region parameters and obs. angle:

Resolving power compared

Summary

- Cyclotron lines are common features of accreting pulsars.
- In principle they hold great diagnostic power for the parameters of the emission region – which up to today is still not well understood!
- Currently we are limited in spectral or temporal resolution to test detailed models ⇒ mostly rough, empirical results.
- SIMBOL-X will allow detailed model comparison with high temporal resolution bringing us closer to actual physics.