Clusters of galaxies: high energy emission

M. Arnaud
CEA - Service d'astrophysique Saclay

Thermal and non-thermal components

X-ray thermal - diffuse emission Hot plasma ($T \sim 2-10 \text{ keV}$)

main baryonic component [80% DM, 20% ICM, 5% stars]

[Clarke &Ensslin, 2001; VLA]

Radio synchrotron - diffuse emission

Relativistic electrons (~1-100 Gev)

Magnetic Field (0.1 - 1 G)

IC e- on CMB ==> NT X-ray (power law)

Origin and acceleration of the relativistic electrons?

Cluster hierarchical formation ==> Shocks (heat the gas at T_{virial})

- Clusters: good reservoir of E< 10⁶ Gev particules
- Radio halos/relics in unrelaxed (merger) clusters only; e- accelerated by Shocks?

Pb: everywhere but $t_{life} \sim 10^7 - 10^8$ years $<< t_{diffusion}$

==> recent creation or acceleration by a mechanism at cluster scale

- Several Models: Thermal electrons accelerated by shocks (high M) /turbulence
 - Non thermal electrons (from above or from AGN/Winds) re-accelerated
 - Secondary electrons from inelastic collisions of NT protons with ICM

Importance of the Non thermal component (B, energetic particles)

- Diagnostic information on the physics of cluster formation
 - dynamics of hierarchical formation process
 - AGN and galaxy feedback
- May influence the thermo-dynamical evolution of the ICM
- May contribute to the overall pressure
 - ==> Mass higher than estimated from the HE equation and P_{therm} only
 - ==> Impact on cosmological parameters estimated from N(M) or f_{gas}

Radio - X-ray complementarity

- Radio thermal X-ray
- e.g Insight on acceleration process (shock, turbulence)

BUT

+ Radio

Synchrotron (B, NT e-)

==> degenerate

Faraday Rotation (B, Te-)

==> B in few directions

+ IC (NT e-)

==> B, NT e-

The (difficult) search for IC emission

- Powerlaw e- spectrum ==> power law X-ray IC spectrum
- Dominates the thermal emission only at very low E or high E ($> kT \sim 10 \text{ keV}$)
- First detections only recently with RXTE and Beppo-SAX (5 clusters!)

Very faint signal (a few □)

detection sensitive to bkg systematics e.g earlier Sax detection infirmed

Detection at 4.6

Significant hard tail but spectrum also fitted with 2 kT (NB expected in mergers)

With Proportional Counters (Beppo-Sax, RXTE):

- Global spectrum ==> ambiguous interpretation (multi kT; AGN contamination)
- Low S/N if localised emission

NEED

focusing optics at high E = SIMBOL-X

What SIMBOL-X can do (an exemple)

- exclude AGNs in FOV
- extract spectrum in isothermal regions (kT variations at ~ several arcmins) ==> unambiguous evidence of hard X-ray excess
- S/N gain. Specially powerful for relics (region of high IC, low thermal emission)
- Characterization of power law: normalization: 15 % accuracy

slope: 4%

Conclusion

- The study of the non thermal component (B, high energy particles) in clusters is important for cosmology
- A relatively new, but very active field
- Study of high energy emission essential and complementary to radio study
- New imaging capabilities of Symbol X at high E essential