DAPNIA-06-259 |
---|
Model--independent analysis of polarization effects in elastic electron--deuteron scattering in presence of two--photon exchange |
G. I. Gakh, E. Tomasi-Gustafsson |
The general spin structure of the matrix element, taking into account the two--photon exchange contribution, for the elastic electron (positron) --deuteron scattering has been derived using general symmetry properties of the hadron electromagnetic interaction, such as P--, C-- and T--invariances as well as lepton helicity conservation in QED at high energy. Taking into account also crossing symmetry, the amplitudes of $e^{\\mp}d-$scattering can be parametrized in terms of fifteen real functions. The expressions for the differential cross section and for all polarization observables are given in terms of these functions. We consider the case of an arbitrary polarized deuteron target and polarized electron beam (both longitudinal and transverse). The transverse polarization of the electron beam induces a single--spin asymmetry which is non--zero in presence of two--photon exchange. It is shown that elastic deuteron electromagnetic form factors can still be extracted in presence of two photon exchange, from the measurements of the differential cross section and of one polarization observable (for example, the tensor asymmetry) for electron and positron deuteron elastic scattering, in the same kinematical conditions. |